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Rule-based evidence accrual system for image understanding
Nelson Marquina

Artificial Intelligence/Image Understanding Section
Honeywell Systems and Research Centes
2600 Ridgway Parkway, Minneapolis, Minnesota 55413

abstzact

The rain function of an evidence accrual system for image understanding is to
sequentially update information on scene objects based on new sensor data or on
nor~senscry informaticr such as intelligence. This paper presents a concept for
sequentially updating information on scene objects. Scene objects and background
fclutter) ore represented by attributec relational graphs in which nodes represcnt
oLjects of interest and arcs tejpresent inter-object relatjions. Dynamic
reccynitior/identification of nodes is acomplished by a belief/disbelief measure. our
experimental results with infrared images show improvements in natural scene obtject
recognition over traditional image processing methods.

Intxoduction

Horeywcll Systems and Research Center, in a research contract with Air Force Office
ot Scientific Research (AFOSR), is currently working with real time' air-to-ground
sequences of infrared (IR) and range images with the cbjective of recognizing and
jdentifying scene objects of interest.

Cur approach to this problem is based on the notion of incremental acquisition of the
scene model, Automatic object screcner systems operate on video image frames, extract
objects in a frame, and optimally classify these objects into objects and backgrcund
racted on their statistical and semantic features. The performance of the system
(protabilities of false alarm and detection) depends on the quality of data and the image
segnentors and the classifiers used by the system. The full potential of the segmentors
and the classifiers is often not achieved because of severe system noise.

Misclassification may be reduced by examining the extracted objects and the
clascifier decisions on these objects over a sequence of image frames. 1, 2 This
approach is useful and effective when noise in the image understanding system resclts in
random noise in the processed image or random error in the feature values of the
extracted otjects, and the noise or the error is uncorrelated from frame to frame, When
the image it noisy, an object may fail to meet the segmentation criterie of the system,
resulting in a misclassification. When the feature values of the extracted objects are
errcnecus, there may be missed objects as well as false alarms, By accumulating
inforzration from one frame to the nhext regarding the locations and the feature values of
the extracted objects, improved misclassification and detection can be achieved. Some
reasons for the limitations of single-frame analysis approach are:

1. Objects in the scene may be occluded in any particular view,

2. Because of the high noise content of an air-to~ground IR image, it would be difficult
to interpret all the scene segments,

3, Errors in analyzing and interpreting an image may cr~ate errors and inconsistencies
in the scene description.

Our method involves using multiple views of the scene in a sequential manner. The
different views are obtained via sensor motion (e.q9., flying airplane or helicopter)
and/or scene object motion (e.g., mo;ing vehicles), A partial scene description using
Attributed Relational Graphs (ARG's) ,47is derived from each frame. As each succecsive
frame is analyzed, the model of the scene is incrementally updated with inforration
deriv 4 from the current frame. The model is initially a crude representation cf the
scene in which some objects may have been recognized, but most of them remain buried in a
gegnent such as the case when background and object do not have high enough contrast,
noticeable texture differences or objects have not moved significantly. An important
acpect of dynamically updating the scene model as each frame is analyzed is the effective
use of scene/image knowledge in the interpretation process,

particularly on methods and techniques for aggregating and rapping preliminary region,
boundary, and/or surface information into higher-level descriptions.
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The next section presents attributed relational graphs in the context of natural
scere knrwledge representation. Later on we discuss how to update the scene model by
uciry belicf/disbelief measures,

Scepe Representation Using Graphs

Relational graphs have been used in several applications such as chemical structure
description, picture encoding, relationzl data-base systems for pictures, network
representation, switching theory, etc. The graph representation of images offers several
powerful capabilities that are useful for image understanding such as the proper handling
of the actual dimensionality and hierarchy of the images, the topological invariance, and
the ability of having attributes (or features) attached to their nodes and arcs or
nranches. =,6 Generally speaking, an Attributed Relatjonal Graph (ARG) is a data
structure defining an expected collection of objects, such as an outdoor scene, the
expected visual attributes associated with the objects in the scene (each of which can
have a1 arsociated ARG such as a syntactic decomposition), and the expected relations
amuny them, For example, an outdoor scene can consist of classes "sky,” "hill," ®road,"
®*vehicle,® "tree,” and ®background.® The clase “"vehicle® can have an ARG to represent
the different types of vehicles expected in the scenario under observation. Furthermore,
each type of vehicle is decomposed into its major parts such atc "engine,® “"body," etc.
The scene model represented by ARG's is sequentially updated by analyzing new frames.
The interpretation of scene objects is dynamically accrued over time and convergence of
interpretation yields the recognition of objects. The interpretation stage is performed
by & rule-tased systenm cormposed of production rules representing domain-specific
knowledge about the scenario under observation, The information available to the
rule-rased system is composed of four classes: Kknowledge of form (shape, relative size,
etc.), spectral characteristics (IR signatures, texture measures, etc.), plausible
relations with other objects (convoy formation, on-rocad/off-road vehicles, etc.), and
terporal profile (velocity, maneuverability, etc.). Interpretation rules relate image
events to krowledge events by providing evidence for or against an object-hypothesis.

Lyidence Accrual with Belief Measuces

Decisicn sroothing techniques are utilized in object tracking systems to increase
otject tracking recognition confidence and decrease false alarm rate. Typically,
statistical methods are employed in decision smoothing. These include accepting the mear.
faverage) or mode (maiority) target type over time, or using probabilistic models such as
the Bayesian normal or blnonhl,e to evaluate the likelihood of the various object
types based on sequential observations. Simple statistical approaches, such as the mean
and mode, suffer because they fail to account for auxiliary evidence of recognition
accuracy which may be available as a by-product of the detection, segmentation,
classification, and tracking processes. Schemes which attempt to use hypothesis testing
theory [7]), [8) to accumulate recognition confidence are unsatisfactory because they rely
heavily upon assumptions of statistical models of the ®“deciscion pogulation‘ which tend
not to reflect the true nature of the observations. In particular, "evidence® for belief
in various object classifications may come from several (statistically unrelated)
sources. Thus, recognition of an object as a tank with 680t confidence does not generally
imply that the confidence of other object types is less or equal to 20%, If
classification was being done statistically on sets of features, it might well be the
case that we attribute different confidences to the distributions of different object
types in different feature spaces. 1n that case, classification results such as: “tank,
80%, APC, 40%," could make sense. Put another way, observation of "tank, 608" ic not
necessarily equivalent to the conclusion "not tank, 20\." To utilize Bayes theorem to
calculate thre probability of “"classification tank®™ given observed evidence (such as a set
of features or a geometric arrangement of object components), requires that we know the
probability of observing the evidence, given that the object is a tank. Yet the latter
is precisely equivalent to the problem of ncdeling the object signature.

Lack of well-specified mathematical models confounds statistical accrual of
classification confidence in many other areag of human endeavor including ptediction of
e.onoric trends, weather forecasting, and medical diagnosis. Yet experts in these areas
are often able to draw accurate conclusions on the basis of incremental (i.e.,
seguentially obtained) observations of evidence relevant to their conclusions.
cnortiiffe and Buchanan have devised a method for incremental accrual of clessification
corfidence which is motivated by the techniques employed by human experts in mecdica:l
diagnosis, It was implemented originally in the MYCIN expert knowledge systen 1€, and if
now used routinely in the knowledge engineering field. The theory assumes tlat one carn
formulate approxinations for a priori and conditional probabilities, but instead of
treating  thetc ac strict statistical entities it uses them to determine
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ncacures of "telief® and "disbelief.” These belief measures are in turn used to defire
measures of confidence, and rules for incrementally updating both the belief and
confidence measures are detailed,

The belief measures, as they are implemented in expert knowledge systems, 2fe nhot
time adaptive. That is, once some evidence for belief (or disbelief) in a hypothesis is
accrued, its significance and numerical value never decreases. In the expert knowledge
applications, such as medical diagnosis or mineral prospecting, this makes sense. During
the time span of investigation, conditions are static; i.e., the disease or minersl
deposits do not change their characteristics. However, this is not true of object

R signatures even over short time spans. Noise or low contrast may cause isolated frame
mis-classification. It is desirable for the significance of this single observation to
decrease over time. We have adapted the basic knowledge engineering belief measures to
incorporate temporal context. Thus, hypotheses are formulated frame by frame, and time
constants have been added to the incremental updating rules for absolute belief mesures,
Further temporal accrual of belief depends upon the gradient of the disbelief measure in
the time domain, and vice versa.

Belief and Confidence Measures
Suppose we have a set of possible object types T1, T2/..., Tp, and a time sequence of
frames through which we have tracked an object. Assume that in frame i, evidence ejy is

observed which supports the hypothesis, hj;, that the tracked object is actually object
type Tj. Assume also that confidence measute P(hjj) and P(hjj/eq5) with

Ty v =

9 Z Pthj,) <1
? < P(hjj/egq) <1

1 are calculated. P(hj4) is interpreted as the a priori confidence that in the i-th frame,
the tracked object if T4, and P(hjj/ejj) is the conditional confidence that, after
observing evidence €5y in Trame i, the tragked object is type Tj.

Defire conditional measures of belief and disbelief that the tracked object in t.e
i~th frame is type Tj by:

! 1 if P(hy )=
4 . nax{Plh, /e ). P(h,. )1~ P(h, )

Y4il. €. )= 13 43 i3 il
4 i if P(h,
3 J 12 I-P(hij) f (hlj)’l
i 1 if P(hij)tl

FBh, e, ) rin[Ph; /e ), P(RyMI- PUL;S)

1-P(h,

xj’ if P(h‘j)ﬁﬂ

Note that if MB(hij, eij) > 8, then, HD(h‘j, ejs) = @ and vice versa, Thus, if the
evidence, €jy, incieases belief in h;i, then it “cannot contribute to the disbeliet in
Lj;. Define absolute measures of beliel and disbelief ir the i-th frame by

¢ if HD(hi.)-l

. —AMR ¢ if MD(h, )41
FB(h ) Ans(hx_ljyons(h‘j.eij)(l A“B‘hi~1j)l i3

L] if MB(h . )=1
L)

POk )e B"D’“j-1j)’"°‘hxj"xj)'x'BHD"i—lj)l if nn(nij)ﬂl

where A= L--nb(h‘j,e‘j) and B= ]- pHB(hij.eij) and
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.} where the time constants,osand B are fixed real numbers, 0<e<( 1,
N 88 2 ). Finally define the confidence that the tracked object is type T; based on the

A
4

¢..dence accumulated through the i-th frame by

CF{k,4) = MB(hjj) - MD(hy5)
Then -15 CP(ryy) < 1.

»
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r

This follows because P{hjj) and P(hjj/ejy) are betweer ¢ and 1. So, 8 < MB(h;j, ej5) <1
and 0 < HD(hxj/ex ) £ 1. "From this we calculate @ < MB(hjs) < 1 and 8 £ HD(hij) < i. In
order to implemgnt the sequential frame confidence sgheme outlined before, it is
recessary to define a priori single frame confidence P(hji), and conditional single frame
confidence P(hjj/eji), which depends on the evidence for 'hjj (the hypothesis that in +'-
i-th frare¢ the tracked otject is of type j) observed in thé i-th frame. These measuies
are necescarily dependent on the method used for object segmentation, since evidence for
classification 3is derived during this process. We have developed ways of computing
B{tjj) and Pinjj/ei4) for syntactic and statistical clascifiers.

Syntact.c classification is based upor matching extracted target components to target
[P I Inportance of components in the target model is given by weights wyg, 08iwg<l,
with wk=l. Here, wy is the significance of matching the k-th component in the target
nodel. Note that “matching® must reflect the relative geometry of the target
corporent:, Then

SR DR Y v

natched missed
components components

Gefires a preiliminary confidence in the partial match cf a candidate object to a target
model., 1If only m of N components in the candidate object were matched in the model, then
it nakes sense to reduce confidence in the match proportionately. The confidence cj are
cotained by updating the initial value E} as a function of frame number and then obtain
P(L;j/eij) by

P(hjj/ei5) = rlcj)

whete r(x) is a one-to-one non-linear rescaling function which maps (-1,1] onto {@,1] and
also mape [1/2,1] onto [1/2,1). Then €ije the evidence in the i-th frame that supporte
deciding 1n favor of target type Tsi, is given by the match cof the extracted conjonents to
tlouce in the torget model. Since We have a gequence of frames through which an object is
tracked, we define the a priori confidence in the first frame to be P(hij) ® 1/(n+])
where n object types are possible. The n+l represents the "probability” of "non-target,®
8¢ that the tracked object necessarily matches one of the types. For the second frame,
def 1ne P(sz)-P(hij/egj). In the i-th frame, 1>2 define

i-1
- 2 :0'_ _q P(h /e .).
P(hij) i-k-1 ki’ Tkj
k=l

The F(hjj) represents the weighted sum of historic evidence, up to the i-th frare, in
favor of "the target being classified as type Tj.

For the case of a statistical classifer, segmentation results in a set of feature
values Ke(x],...,Xp) rather than extracted components. A parametric and a non-parametric
scheme for calculating P(hij/eij) have been developed. They are currently undet
experimental evaluation,
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An application of belief measures for decision smoothing over multiple frames has

Leen presented. The same scheme generalizes to update confidence in any entity tracked

thiough frames, providing ®a priori® and “conditional” confidences can be attached to the

entity at each frame. For instance, appearance of individual scene objects for syntactic

clescification is amenable to this process. Bach object is matched against target

models, and single frame confidence derived from the "goodness~of-match.” Another

example is confidence in tracked object velocity calculated between frame pairs. Single

. frame (pair) confidence is calculated from agreement (or lack of it) between current
frame location and predicted location from the previous frame velocity vector.

A different set of applications of belief measures to image understanding exist which
are not time dependent. (Setting the time factors for rule update, and , equal to zero
elinirates time dependence in these rules.) Suppose that we wish to make a binary
decision about a property of an object in an image, such as ®"round or not round®, "match
or not match a model or template®, “component is merged or not®, ®component is a fragment
or not", etc. Suppose that we have 2 set of presumably independent mesures, each of
which capturec some aspect of the decision, and to each of which is associzted a
cunfidence measure between € and 1, For instance, 2 measure of roundnest is given by
snaliest “SE Lrom a circle, by the variance of the set of curvatures calculated at each
peint on the perimeter of the object, and also by the ratio of perimeter to pixel area.
Fer each c¢f these mesures, a normalized scale of distance of the measure from that
produced by a citcle can be calculated, yielding a confidence measure. The problem is to
acciue the strerngth of these varicus confidences to decide the total confidence in the
decrsion "circle~-not circle.®™ A solution is to order the measures arbitrarily and treat
thed, ac sequentially obtained information (even though they can be obtained in
parallel). Tnen the scheme outline in this paper (with time constantsecand B8 set to
2erc) can be applied to yield a single confidence measure. This mesure can then be
4 thresholded to determine the binary decision,

It is also possible to consider morc complex combining schemes if more information,
such as deqgree of dependence of measures, or independent confirmation of a measure, is
available.
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